Use of Sage in my Research-Two Examples

Kyu-Hwan Lee

July 27, 2018

1. First Example

- Joint work with Jang Soo Kim and Se-jin Oh
- \mathfrak{g} : affine Kac-Moody algebra of classical type $X_{n}^{(r)}$,

$$
(X=A, B, C, D \text { and } r=1,2)
$$

$\Lambda \in P^{+}$: dominant integral weight
$V(\Lambda)=\bigoplus_{\mu} V(\Lambda)_{\mu}$: irreducible highest weight module

- A weight λ of $V(\Lambda)$ is called maximal if $\lambda+\delta$ is not a weight of $V(\Lambda)$, where δ is the null root. We have

$$
V(\Lambda)=\bigoplus_{\lambda \in \max (\Lambda)} \bigoplus_{k=0}^{\infty} V(\Lambda)_{\lambda-k \delta}
$$

where $\max (\Lambda)$ is the set of maximal weights of $V(\Lambda)$.

- It is enough to consider $\max (\Lambda) \cap P^{+}$.
- Problem: Determine multiplicities $\operatorname{dim} V(\Lambda)_{\lambda}$ for $\lambda \in \max (\Lambda) \cap P^{+}$.
- There are algorithms to compute each individual multiplicity. But we want to have a systematic description.
- Moreover, these multiplicities are also weight multiplicities of the finite dimensional Lie algebras of type X_{n}.

1.1. Catalan triangle

Definition

A Dyck path is a path on the lattice \mathbb{Z}^{2} starting from $(0,0)$, using steps $(1,1),(1,-1)$ without going below the x-axis.

Example

The following path is a Dyck path from $(0,0)$ to $(10,2)$:

A Catalan triangle number $\mathrm{C}_{(m, k)}$ for $m \geq k \geq 0$ is the number of all Dyck paths ending at the lattice point (m, k). We form a triangular array consisting of $\mathrm{C}_{(m, k)}$, called the Catalan triangle.

Theorem (Tsuchioka, 2009)

For type $A_{n}^{(1)}, n \geq m$, each nonzero $\mathrm{C}_{(m, k)}$ is the multiplicity of a maximal weight for the highest weight $\Lambda_{0}+\Lambda_{k}, k=0,1, \ldots, m$.

- Can we have similar results for other types?
- We need to see data of weight multiplicities.
- The SageMath package developed by Daniel Bump was extremely helpful.
- After extensive experiments, we could see patterns.

Theorem (Kim-L.-Oh)

For types $C_{n}^{(1)}, n \geq m$, each nonzero $\mathrm{C}_{(m, k)}$ is the multiplicity of a maximal weight for the highest weight $\Lambda_{k}, k=0,1, \ldots, m$.

- In particular, highest weights $\Lambda_{0}+\Lambda_{k}$ of $A_{n}^{(1)}$ and Λ_{k} of $C_{n}^{(1)}$ have the same maximal weight multiplicities.

1.2. Pascal triangle

Definition

A binomial path is a path on the lattice \mathbb{Z}^{2} starting from (0,0), using steps $(1,1),(1,-1)$.

Example

The following path is a binomial path from $(0,0)$ to $(10,2)$:

A binomial coefficient $\mathrm{B}_{(m, k)}$ for $m \geq k \geq 0$ is the number of all binomial paths ending at the lattice point (m, k). Then we can form the Pascal triangle consisting of $\mathrm{B}_{(m, k)}$.

Theorem (Kim-L.-Oh)

For types $B_{n}^{(1)}$, $D_{n}^{(1)}$ and $A_{2 n-1}^{(2)}, n \geq m$, each nonzero $\mathrm{B}_{(m, k)}$ is the multiplicity of a maximal weight for the highest weight $\Lambda_{k}+\delta_{k, 1} \Lambda_{0}$, $k=1,2, \ldots, m$.

- We recognize combinatorics of crystals behind the triangle.

Lattice path \Longleftrightarrow tableaux
\Longleftrightarrow crystal element in the crystal graph

- The triangle can be understood through an insertion scheme.

1.3. Motzkin triangle

Definition

A Motzkin path is a path on the lattice \mathbb{Z}^{2} starting from $(0,0)$, using steps $(1,1),(1,0),(1,-1)$ without going below the x-axis.

Example

The following path is a Motzkin path from $(0,0)$ to $(10,1)$:

A generalized Motzkin number $\mathrm{M}_{(m, k)}$ for $m \geq k \geq 0$ is the number of all Motzkin paths ending at the lattice point (m, k). Then we can form a triangular array consisting of $\mathrm{M}_{(m, k)}$, called the Motzkin triangle.

Theorem (Kim-L.-Oh)

For types $B_{n}^{(1)}$ (resp. $A_{2 n}^{(2)}$ and $\left.D_{n+1}^{(2)}\right), n \geq m$, each nonzero $\mathrm{M}_{(m, k)}$ is the multiplicity of a maximal weight for the highest weight $\Lambda_{n}+\Lambda_{n-k}+\delta_{k, 0} \Lambda_{n}\left(\right.$ resp. $\left.\Lambda_{0}+\Lambda_{k}+\delta_{k, 0} \Lambda_{0}\right), k=0,1, \ldots, m$.

1.4. Riordan triangle

Definition

A Riordan path is a Motzkin path which has no horizontal step on the x-axis.

Example

The following path is a Riordan path:

A generalized Riordan number $\mathrm{R}_{(m, s)}$ for $m \geq s \geq 0$ is the number of all Riordan paths ending at the lattice point (m, s). Then we can form a triangular array consisting of $\mathrm{R}_{(m, s)}$, called the Riordan triangle.

Theorem (Kim-L.-Oh)

For types $B_{n}^{(1)}, D_{n}^{(1)}$ and $A_{2 n-1}^{(2)}, n \geq m$, each nonzero $\mathrm{R}_{(m, k)}$ is the multiplicity of a maximal weight for the highest weight $\Lambda_{0}+\Lambda_{k}+\delta_{k, 1} \Lambda_{0}$, $k=1,2, \ldots, m$.

2. Second Example

- Joint work with Kyungyong Lee
- \mathcal{Q} : acyclic quiver of rank N
- $M \in \operatorname{rep}(\mathcal{Q})$: representation of \mathcal{Q} over \mathbb{C}

When $N=3$,

- $d_{M}=\left(\operatorname{dim} M_{1}, \ldots, \operatorname{dim} M_{N}\right)$: dimension vector of M
- For $M, N \in \operatorname{rep}(\mathcal{Q})$, define

$$
\left\langle d_{M}, d_{N}\right\rangle=\operatorname{dim} \operatorname{Hom}(M, N)-\operatorname{dim} \operatorname{Ext}^{1}(M, N)
$$

and

$$
\left(d_{M}, d_{N}\right)=\left\langle d_{M}, d_{N}\right\rangle+\left\langle d_{N}, d_{M}\right\rangle
$$

- When M is indecomposable, we call d_{M} a (positive) root.
- A root α is called real if $(\alpha, \alpha)=2$.
- A real root α is called a real Schur root if $\alpha=d_{M}$ and $\operatorname{Ext}^{1}(M, M)=0$.
- We can use the Weyl group to generate real roots.
- Define the simple roots

$$
\alpha_{1}=(1,0, \ldots, 0), \alpha_{2}=(0,1,0, \ldots, 0), \ldots, \alpha_{N}=(0, \ldots, 0,1)
$$

- Define $s_{i}: \mathbb{Z}^{N} \longrightarrow \mathbb{Z}^{N}$ by

$$
s_{i}(\beta)=\beta-\left(\beta, \alpha_{i}\right) \alpha_{i}
$$

The Weyl group W is the subgroup of $G L_{N}(\mathbb{Z})$ generated by s_{i}, $i=1,2, \ldots, N$.

- A root α is real $\Longleftrightarrow \exists w \in W$ such that $\alpha=w \alpha_{i}$ for some i.

Let $N=3$, and \mathcal{Q} be the quiver

$$
\begin{aligned}
\alpha_{1}+6 \alpha_{2}+2 \alpha_{3} & =s_{2} s_{3} \alpha_{1}, \\
15 \alpha_{1}+6 \alpha_{2}+2 \alpha_{3} & =s_{1} s_{2} s_{3} \alpha_{1}, \\
2385 \alpha_{1}+924 \alpha_{2}+340 \alpha_{3} & =\left(s_{1} s_{2} s_{3}\right)^{2} s_{2} s_{3} s_{2} s_{3} \alpha_{1}, \\
1662490 \alpha_{1}+4352663 \alpha_{2}+11395212 \alpha_{3} & =\left(s_{3} s_{2} s_{1}\right)^{4} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} \alpha_{2} .
\end{aligned}
$$

Question: Which ones are real Schur roots?

- There are answers due to Schofield, Speyer, Thomas, ...

Problem: Give a description for real Schur roots which can be used to distinguish real Schur roots among all real roots.

- We can use cluster variables to generate real Schur roots.

Theorem (Fomin-Zelevinsky, 2002)

Each cluster variable is a Laurent polynomial over \mathbb{Z} in the initial cluster variables $x_{1}, x_{2}, \ldots, x_{N}$.

Therefore, the denominator of every cluster variable is well defined and we have

$$
\begin{aligned}
x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{N}^{m_{N}} \longmapsto & \left(m_{1}, m_{2}, \ldots, m_{N}\right) \\
= & m_{1} \alpha_{1}+m_{2} \alpha_{2}+\cdots+m_{N} \alpha_{N}
\end{aligned}
$$

Theorem (Caldero-Keller, 2006)

The above correspondence is a bijection between the set of denominators of non-initial cluster variables and the set of real Schur roots of \mathcal{Q}.

For example,

$$
\begin{aligned}
& \mu_{2} \mu_{1} \mu_{3} \mu_{2}\left(\mu_{1} \mu_{2} \mu_{3}\right)^{4} \Theta \\
& =\left(\left(\frac{P_{1}}{x_{1}^{167041} x_{2}^{437340} x_{3}^{1144950}}, \frac{P_{2}}{x_{1}^{1662490} x_{2}^{4352663} x_{3}^{11395212}}, \frac{P_{3}}{x_{1}^{28656} x_{2}^{75026} x_{3}^{196417}}\right),\left(\begin{array}{ccc}
0 & 10 & -574 \\
-10 & 0 & 58 \\
574 & -58 & 0
\end{array}\right)\right)
\end{aligned}
$$

We obtain three real Schur roots:
$167041 \alpha_{1}+437340 \alpha_{2}+1144950 \alpha_{3}$, $1662490 \alpha_{1}+4352663 \alpha_{2}+11395212 \alpha_{3}$, $28656 \alpha_{1}+75026 \alpha_{2}+196417 \alpha_{3}$.

- There is a SageMath package for computing cluster variables.
- Can we use this package to generate real Schur roots?
- The package calculates numerators and denominators of cluster variables.
- Instead, we needed to write a code for denominators only.
- After some experiments, we could formulate a conjecture.

2.1. Conjecture

- S_{N} : the permutation group on $I:=\{1,2, \ldots, N\}$
- Let $P_{\mathcal{Q}} \subset S_{N}$ be the set of all permutations σ such that there is no arrow from $\sigma(j)$ to $\sigma(i)$ for any $j>i$ on \mathcal{Q}.
- For each $\sigma \in P_{\mathcal{Q}}$, consider

- Let Σ_{σ} be the compact Riemann surface of genus $\left\lfloor\frac{N-1}{2}\right\rfloor$ obtained by gluing together the two N -gons with all the edges of the same label identified according to their orientations.
- The edges of the N-gons become N different curves in Σ_{σ}.
- If N is odd, there is one vertex on Σ_{σ}.

If N is even, there are two vertices on Σ_{σ}.

- $\mathcal{T}:=T_{1} \cup \cdots T_{N} \subset \Sigma_{\sigma}$
V : the set of the vertex (or vertices) on \mathcal{T}
- Define R to be the set of words $i_{1} i_{2} \cdots i_{k}\left(i_{p} \neq i_{p+1}\right)$ such that $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ is a reflection in W.

For $\sigma \in P_{\mathcal{Q}}$, define a σ-admissible curve $\eta:[0,1] \longrightarrow \Sigma_{\sigma}$ by
(1) $\eta(x) \in V$ if and only if $x \in\{0,1\}$;
(2) there exists $\epsilon>0$ such that $\eta([0, \epsilon]) \subset L_{1}$ and $\eta([1-\epsilon, 1]) \subset L_{2}$;
(3) if $\eta(x) \in \mathcal{T} \backslash V$ then $\eta([x-\epsilon, x+\epsilon])$ meets \mathcal{T} transversally for sufficiently small $\epsilon>0$;
(4) $v(\eta) \in R$, where $v(\eta):=i_{1} \cdots i_{k}$ is given by

$$
\begin{aligned}
& \{x \in[0,1]: \eta(x) \in \mathcal{T}\}=\left\{x_{1}<\cdots<x_{k}\right\} \quad \text { and } \\
& \quad \eta\left(x_{\ell}\right) \in T_{i_{\ell}} \text { for } \ell \in\{1, \ldots, k\} .
\end{aligned}
$$

- We have

$$
\eta \rightsquigarrow v(\eta) \rightsquigarrow w \rightsquigarrow \beta(\eta)
$$

Let Γ_{σ} be the set of (isotopy classes of) σ-admissible curves η with no self-intersections.

Conjecture

For each $\eta \in \Gamma_{\sigma}$, let $\beta(\eta)$ be the positive real root corresponding to η.
Then $\left\{\beta(\eta): \eta \in \cup_{\sigma \in P_{\mathcal{Q}}} \Gamma_{\sigma}\right\}$ is precisely the set of real Schur roots for \mathcal{Q}.

For example,

Then $P_{\mathcal{Q}}=\{i d\}$.
(1) We have $v(\eta)=23132$ for the admissible curve η given by

The corresponding reflection is $w=s_{2} s_{3} s_{1} s_{3} s_{2}$, and its real root is $s_{2} s_{3} \alpha_{1}=\alpha_{1}+6 \alpha_{2}+2 \alpha_{3}$. Since the curve η has self-intersections, this real root is not Schur (if the conjecture is true).
(2) We get $v(\eta)=(321)^{4} 2321232321232(123)^{4}$ for η given by

The corresponding reflection is
$w=\left(s_{3} s_{2} s_{1}\right)^{4} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}\left(s_{1} s_{2} s_{3}\right)^{4}$, and its real root is

$$
\left(s_{3} s_{2} s_{1}\right)^{4} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} \alpha_{2}=1662490 \alpha_{1}+4352663 \alpha_{2}+11395212 \alpha_{3} .
$$

Since the curve η has no self-intersections, this real root is Schur (if the conjecture is true).

- We need to check the conjecture. We wrote a code to compute $\beta(\eta)$ from η for rank 3 quivers.
- We prove the conjecture for 2-complete quivers of rank 3.
- Felikson and Tumarkin proved the conjecture for all 2-complete quivers of arbitrary ranks.
- The conjecture is wide open for general quivers.
- For Dynkin quivers, the conjecture can be checked.
- Consider type A Dynkin quiver

$$
1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n
$$

- All positive real roots are Schur.
- Each positive real root is equal to $s_{i} s_{i+1} \cdots s_{j-1} \alpha_{j}$, and the corresponding reflection is $w=s_{i} \cdots s_{j-1} s_{j} s_{j-1} \cdots s_{i}$.
- There exists an admissible curve η on $\Sigma_{i d}$ with no self-intersections and $v(\eta)=i \cdots(j-1) j(j-1) \cdots i \in R_{w}$.

- Consider E_{8} Dynkin quiver

- The highest positive real root

$$
6 \alpha_{1}+5 \alpha_{2}+4 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+4 \alpha_{6}+2 \alpha_{7}+3 \alpha_{8}
$$

can be given by $\left(s_{8} s_{7} \cdots s_{2} s_{1}\right)^{5}\left(s_{8} s_{7} \cdots s_{2}\right) \alpha_{1}$.

- The corresponding reflection is

$$
\left(s_{8} s_{7} \cdots s_{2} s_{1}\right)^{5}\left(s_{8} s_{7} \cdots s_{2}\right) s_{1}\left(s_{2} \cdots s_{7} s_{8}\right)\left(s_{1} s_{2} \cdots s_{7} s_{8}\right)^{5}
$$

- The root is given by the following non-self-intersecting curve on $\Sigma_{i d}$.

Thank You

